

DWATS			
NOTES			
REVISIONS			
DATE	REMARKS		SIISAATURE
Settler ABR , AF,Acration Tank \& Collection tank Section-AA \&DD			
$\begin{aligned} & \hline \text { DRG. No. } \\ & \text { Dw/No:-02 } \end{aligned}$			
Navodaya Medical College at Raichur			
consultant:			
HQ.. \#306, 13th Cross,2nd Stage ,Pipeline Road, Mahalakshmipuram,Bengalure - 560086			
dRAWN BY	CHECKED BY	APPRO	ED BY
Madhu.V	Shahapuri	Babas	
DATE	DATE	DA	
18-99-2019	18-99-2019	18-09-2	
SCALE: NTS	SHEET 02		

Manhole Covers Details

STP DESIGN FEASIBILITY REPORT

PROCESS DESIGN

1. Source of water : Sewage waste water
2. System capacity : 225 KLD
3. Operating hour : 24 hours
4. Area required : 1500-2000 Sq. feet
5. Technology : Decentralized Wastewater Treatment System (DEWATS) Based, i.e., a combination of settler, Anaerobic baffled Reactor and filtration units.

CHARACTERISTICS OF RAW EFFLUENT

The characteristics of the raw Effluent assumed are given below:

Sl.No	Parameters	Unit	Value
1	Biological Oxygen Demand (BOD)	mg / l	$200-250$
2	Chemical Oxygen Demand (COD)	mg / l	$350-425$
3	Total Suspended Solids (TSS)	mg / l	$250-375$
4	Oil and Grease	mg / l	$50-60$
5	pH	-	$6-9$

CHARACTERISTICS OF TREATED EFFLUENT

The required characteristics of treated Effluent water as per PCB are given below:

Sl.No.	Parameters	Unit	Value
1	Biological Oxygen Demand (BOD)	mg / l	<10
2	Chemical Oxygen Demand (COD)	mg / l	<50
3	Total Suspended Solids (TSS)	mg / l	<30
4	Oil and Grease	mg / l	<10
5	pH	-	$6.5-8.0$

Note: Treated water quality is subject to inlet raw Effluent parameters. Any change in inlet parameters will change treated Effluent quality accordingly.

STP DESIGN FEASIBILITY REPORT

DESIGN ASSUMPTIONS

Peak hours:

Sl.No	Peak Timing	No. of Peak Hours
01	$06: 00 \mathrm{am}-10: 00 \mathrm{am}$	4 hours
02	$01: 00 \mathrm{pm}-02: 00 \mathrm{pm}$	1 hours
03	$04: 00 \mathrm{pm}-06: 00 \mathrm{pm}$	2 hours
04	$07: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	3 hours

Total peak hours : 10 hours

Wastewater quantity : 225 KLD
Peak flow : $15 \mathrm{~m} 3 /$ hour
Wastewater quality :

Sl.No	Parameters	Unit	Value
01	Typical BOD	mg / l	250
02	Typical COD	mg / l	425
03	Typical TSS	mg / l	375

(As per CPHEEO manual on sewage treatment: Table 5.4)

DESIGN CALCULATION OF TREATMENT MODULES

Bar Screen Chamber

A bar screen is a mechanical filter used to remove large objects, such as rags and plastics, from wastewater. It is part of the primary filtration flow

STP DESIGN FEASIBILITY REPORT

and typically is the first, or preliminary, level of filtration, being installed at the influent to a wastewater treatment plant.

Size of Bar Screen $\quad: 1.0 \mathrm{~m} * 1.0 \mathrm{~m} * 1.2 \mathrm{~m}$

Settler

Physical, chemical, and biological processes are used to remove contaminants and produce treated wastewater (or treated effluent) that is safe enough for release into the environment.

Inlet BOD	$: 250 \mathrm{mg} / \mathrm{l}$
Inlet COD	$: 425 \mathrm{mg} / \mathrm{l}$
SS/COD Ration	$: 0.42$
Sludge accumulation duration	$: 24$ months

Factor "COD Removal to HRT" :0.45
COD Removal Rate :32 \%
Factor "Efficiency ratio of BOD removal to COD removal" :1.06
BOD Removal Rate :34\%
$\begin{array}{ll}\text { Estimated outlet BOD } & : 165 \mathrm{mg} / \mathrm{l} \\ \text { Estimated outlet COD } & : 289 \mathrm{mg} / \mathrm{l}\end{array}$

There are 2 Settlers in this DEWATS Model
Dimensions of settler $1 \& 2$ are as follows
Length of the first chamber in Settler : 1.8 m
Length of the second chamber in Settler : 1.1 m

Total Length of Settler
$: 1.8+1.1=2.9 \mathrm{~m}$
Width
: 4.3 m
Depth
: 3.7 m

No. Of Settler	$=02$
Volume of Each Settler	$=2.9 \mathrm{~m} * 4.3 \mathrm{~m} * 3.7 \mathrm{~m}=46 \mathrm{~m}^{3}$
Total Volume of Settler	$=$ Volume of ST-1 + Volume of ST- 2
Total Volume of Settler	$=46 \mathrm{~m}^{3}+46 \mathrm{~m}^{3}$
Total Volume of Settler	$=92 \mathrm{~m}^{3}$

Anaerobic Baffled Reactor

Anaerobic baffled reactors are suspended type anaerobic digesters which degrade the organics as the wastewater flows in an upward movement passing through a sludge blanket. The contact with the sludge blankets leads to the treatment of the wastewater.

STP DESIGN FEASIBILITY REPORT

Inlet BOD	: $165 \mathrm{mg} / \mathrm{l}$
Inlet COD	: $289 \mathrm{mg} / \mathrm{l}$
Length	: 1.8 m
Width	: 4.3 m
Depth	: 3.3 m
No. OF ABR	$=8 \mathrm{No}$.
Volume of each ABR	$=1.8 \mathrm{~m} * 4.3 \mathrm{~m} * 3.3 \mathrm{~m}=26 \mathrm{~m}^{3}$
Total Volume of ABR	$=26 * 8=208 \mathrm{~m}^{3}$
Sludge Volume	$\begin{aligned} & =5 \% \text { of Total Volume of ABR } \\ & =0.05 * 208 \\ & =10.5 \mathrm{~m}^{3} \end{aligned}$
HRT	$\begin{aligned} & =\text { volume of ABR } /(\text { Daily WW flow } / 24) \\ & =208 /(225 / 24) \end{aligned}$
HRT	$=22$ hour
SS/COD Ration	$=0.42$
Organic Load (kg/m³*day)	$\begin{aligned} = & (\text { BOD * Max. Peak flow *24)/ } \\ & (\text { Volume of ABR *1000 }) \\ = & (165 * 15 * 24) /(208 * 1000) \end{aligned}$
Organic Load	$=0.29 \mathrm{~kg} / \mathrm{m}^{3 *}$ day
Up-flow velocity in ABR	$=0.9-1.2 \mathrm{~m} / \mathrm{hour}$

STP DESIGN FEASIBILITY REPORT

BOD Removal Rate by factors $=$ (factor strength $*$ factor temperature factor No. of chamber * factor HRT* factor organic load)

BOD Removal Rate by factors $=\left(0.80^{*} 1.1^{*} 0.96^{*} 0.95^{*} 1\right)$
BOD Removal Rate by factors $=0.8026$

Hence, BOD Removal Rate $=80.26$ \%

COD Removal Rate by factors = BOD Removal rate / factor

$$
\begin{aligned}
& =0.8026 / 1.07 \\
& =0.73
\end{aligned}
$$

BOD Removal Rate	$: 80 \%$
COD Removal Rate	$: 75 \%$

Estimated outlet BOD	$: 32 \mathrm{mg} / \mathrm{l}$
Estimated outlet COD	$: 74 \mathrm{mg} / \mathrm{l}$

Anaerobic Filter

STP DESIGN FEASIBILITY REPORT

Anaerobic filters are similar to anaerobic reactors except for the fact that they have inert filter media enabling the growth of microorganisms (which enable anaerobic digestion) in a fixed form.

Inlet BOD	$: 32 \mathrm{mg} /$
Inlet COD	$: 74 \mathrm{mg} /$
Length	$: 2.0 \mathrm{~m}$
Width	$: 4.3 \mathrm{~m}$
Depth	$: 3.0 \mathrm{~m}$

No. OF AF
$=6 \mathrm{No}$.
Volume of each AF
$=2.0 \mathrm{~m} * 4.3 \mathrm{~m} * 3.0 \mathrm{~m}=26 \mathrm{~m}^{3}$
Total Volume of AF
$=26^{*} 6=156 \mathrm{~m}^{3}$

HRT

SS/COD Ration
$=0.42$
Voids on filter mass
= $30-45 \%$

Organic Load (kg/m ${ }^{3 *}$ day)
$=(C O D *$ Max. flow */
(Volume of AF *1000)
$=(87 * 225) /(144 * 1000)$
Organic Load
$=0.14 \mathrm{~kg} / \mathrm{m}^{3 *}$ day

Max Up-flow velocity in AF
$=1.5-2 \mathrm{~m} / \mathrm{hour}$

STP DESIGN FEASIBILITY REPORT

COD Removal Rate by factors $=$ (factor temperature $*$ factor strength * factor surface area * factor HRT* factor organic load *factor No. of the chamber)

COD Removal Rate by factors $=\left(1.1{ }^{*} 0.88 * 1.012 * 0.67 * 1 * 1.12\right)$
COD Removal Rate by factors $=0.735$

Hence, COD Removal Rate $=73.5 \%$

BOD Removal Rate by factors = COD Removal rate * factor
$=0.735^{*} 1.12$
$=0.8232$

BOD Removal Rate : 82 \%
COD Removal Rate : 73.5 \%
$\begin{array}{ll}\text { Estimated outlet BOD } & : 7 \mathrm{mg} / \mathrm{l} \\ \text { Estimated outlet COD } & : 23 \mathrm{mg} / \mathrm{l}\end{array}$

Clear Water Tank

It is a storage tank designed to hold the water before passing it through PSF and ACF. If required, Chlorination will be done at this stage.

Pressurized sand and Activated carbon filter

The treated water from the anaerobic filter is further treated using sand and carbon filter. Sand and carbon filters are pressurized vessels containing refined and cleaned sand in one and activated carbon in the other. Pressure Sand filter helps to reduce the suspended solids in the treated water to levels as prescribed by the CPCB, while carbon filter reduces any residual odor and color by the mechanism of adsorption. These filters are to be back flushed at regular intervals to prevent clogging and ensure efficient working of the system as per the manufacturer's guidance.

Design flow rate	$=225 \mathrm{~m}^{3} /$ day
Working period	$=22 \mathrm{~h} /$ day
Average flow rate	$=10.23 \mathrm{~m}^{3} / \mathrm{hr}$
Loading rate on filter	$=16 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{hr}$

Filter of 800 mm Dia x 1500 mm height as per the Standard Design Practice and Experience. Activated Carbon is used is of 900 IV which gives us the best result.

Expected outlet BOD after PSF \& ACF $\quad=<05 \mathrm{mg} / \mathrm{l}$
Expected outlet COD after PSF \& ACF $\quad=<20 \mathrm{mg} / \mathrm{l}$

STP DESIGN FEASIBILITY REPORT

Unit Details of DEWATS System

Sl.No	Description	Dimension	Unit	Volume
1	Bar Screen	$1.0 \mathrm{~m}^{*} 1.0 \mathrm{~m}^{*} 1.2 \mathrm{~m}$	1	$1.2 \mathrm{~m}^{3}$
2	Settler Chamber	$2.9 \mathrm{~m}^{*} 4.3 \mathrm{~m}^{*} 3.7 \mathrm{~m}$	2	$46^{*} 2=92 \mathrm{~m}^{3}$
3	Anaerobic Baffled Reactor	$1.8 \mathrm{~m}^{*} 4.3 \mathrm{~m}^{*} 3.3 \mathrm{~m}$	8	$26^{*} 8=208 \mathrm{~m}^{3}$
4	Anaerobic Filter	$2.0 \mathrm{~m}^{*} 4.3 \mathrm{~m} * 3.0 \mathrm{~m}$	6	$26^{*} 6=156 \mathrm{~m}^{3}$
5	Clear Water Tank	$1.2 \mathrm{~m}^{*} 4.3 \mathrm{~m}^{*} 2.6 \mathrm{~m}$	1	$13.5 \mathrm{~m}^{3}$
6	Pressurized Sand Filter	800 mm Dia x 1500 mm height	1	----
7	Activated Carbon Filter	800 mm Dia 1500 mm height	1	----

Ozonisation

Ozonation (also referred to as ozonisation) is a chemical water treatment technique based on the infusion of ozone into water. Ozone is a gas composed of three oxygen atoms $\left(\mathrm{O}_{3}\right)$, which is one of the most powerful oxidants.

Ozonation is a type of advanced oxidation process, involving the production of very reactive oxygen species able to attack a wide range of organic compounds and all microorganisms.

Ozone has greater disinfection effectiveness against bacteria and viruses compared to chlorination. In addition, the oxidizing properties can also reduce the concentration of iron, manganese, sulfur and reduce or eliminate taste and odor problems.

The treated water is ozonized further, for reuse application.

